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Abstract

The linear piezoelectricity theory is applied to investigate the dynamic response of a center-situated crack
perpendicular to the edges of the piezoelectric strip subjected to anti-plane mechanical and electrical impacts.
Integral transforms and dislocation density functions are employed to reduce the problem to Cauchy singular
integral equations. Numerical results show the e�ects of loading combination and the ratio of crack length to strip

width on the dynamic stress intensity factor and the dynamic energy release rate. Two cases of crack surface
conditions, impermeable and electrical contact, are considered. For an impermeable crack, the dynamic energy
release rate may be used as the crack extension force, whereas for an electrical contact crack, the dynamic stress

intensity factor remains the fracture parameter at the crack tip since the electrical ®eld does not contribute to the
dynamic energy release rate. 7 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Piezoelectricity; Dynamic response; Singular integral equations; Dynamic stress intensity factor; Dynamic energy release

rate

1. Introduction

The wide application of piezoelectric materials in intelligent structural systems makes it necessary to
research the fracture problems associated with such defects as cracks and holes. Especially when cracked
con®gurations undergo dynamic loads, whether conventional fracture parameters (e.g., the dynamic
stress intensity factor) can be adopted to predict the unstable fracture of piezoelectric materials
constitutes an important problem to be solved. Chen and Yu (1997, 1998) investigated the dynamic
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responses of a ®nite crack and a semi-in®nite crack in a piezoelectric material, respectively.
Khutoryansky and Sosa (1995) presented the dynamic fundamental solutions for piezoelectric materials.
Li and Mataga (1996a, 1996b) studied the crack propagation by means of Wiener-Hopf and Cagniard-
de Hoop techniques. They introduced such electrical boundaries as conducting electrode and vacuum
zone to meet Bleustein-Gulyaev wave phenomenon. For scattering of incident waves from the crack,
Shindo and Ozava (1990), Shindo et al. (1996) and Narita and Shindo (1998) investigated, respectively,
the di�raction of normally incident longitudinal waves by a Gri�th crack in an in®nite piezoelectric
material, the scattering of Love waves by an edge crack in piezoelectric layered media, and the dynamic
response of a cracked dielectric medium in a uniform electric ®eld. In this paper, we study the transient
response of a center-situated crack in a piezoelectric strip under anti-plane and electrical impacts. How
to impose the electrical boundary conditions on the crack surfaces for piezoelectric fracture analysis
remains a controversial problem (see, e.g., Pak, 1990; Suo et al., 1992). Here, we consider a crack with
the impermeable surface condition as (see, e.g., Pak, 1990; Li et al., 1990)

D�n � Dÿn � 0

and a crack with the electrical contact surface condition as (see, e.g., Parton, 1976)

D�n � Dÿn f� � fÿ

where Dn is the electric displacement in the direction normal to the crack surface, and f denotes the
electric potential. Integral transforms and dislocation density functions are used to reduce the problem
to singular integral equations that can be solved numerically. For the impermeable crack, the results
indicate that the loading combination parameter has a signi®cant e�ect on the dynamic stress intensity
factor and the dynamic energy release rate which depend on the ratio of crack length to strip width as
well. The results also show that the crack extension may be retarded by adjusting the loading
combination parameter which determines the contribution from electrical ®elds to the dynamic energy
release rate, this is di�erent from the electrical contact case where electrical ®elds do not contribute to
the dynamic energy release rate.

2. Basic equations

Consider a piezoelectric strip of the width 2h that contains a center-situated Gri�th crack of length 2c
with reference to the rectangular coordinate system x, y, z, as shown in Fig. 1. The strip exhibits
transversely isotropic behavior and is poled in z-direction. The anti-plane shear impact and the electric
displacement impact are imposed on the crack surfaces at t � 0: In Fig. 1, H�t� denotes the Heaviside
unit step function, c44, r, e15 and e11 stand for the elastic sti�ness constant, the mass density, the
piezoelectric constant and the dielectric constant, respectively. We consider only the out-of-plane
displacement and the in-plane electric ®eld, that is

ux � uy � 0 uz � w�x, y, t� �1�

Ex � Ex�x, y, t� Ey � Ey�x, y, t� Ez � 0 �2�
where ux, uy, uz and Ex, Ey, Ez are the components of the displacement and electric ®eld vectors. The
constitutive relations are as follows

sxz � c44w, x � e15f, x �3�
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syz � c44w, y � e15f, y �4�

Dx � e15w, x ÿ e11f, x �5�

Dy � e15wy ÿ e11f, y �6�

Ex � ÿf, x Ey � ÿf, y �7�

where sxz, syz and Dx, Dy are the components of the stress tensor and electric displacement vector,
respectively, and f denotes the electrical potential. The governing equations are

c44r 2w� e15r 2f � r
@ 2w

@ t2
�8�

e15r 2wÿ e11r 2f � 0 �9�
where r 2�@ 2

�
@x 2�@ 2

�
@y2 is the two-dimensional Laplace operator.

The boundary conditions for the impermeable case are

syz�x, 0, t� � ÿt0H�t� ÿ c < x < c �10�

Dy�x, 0, t� � ÿD0H�t� ÿ c < x < c �11�

w�x, 0, t� � 0 c < jxj < h �12�

Fig. 1. A piezoelectric strip with a center-situated crack under anti-plane mechanical impact and electrical impact.
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f�x, 0, t� � 0 c < jxj < h �13�

sxz�2h, y, t� � 0 ÿ1 < y < �1 �14�

Dx�2h, y, t� � 0 ÿ1 < y < �1 �15�

For the electrical contact case, the boundary conditions become

syz�x, 0, t� � ÿt0H�t� ÿ c < x < c �16�

w�x, 0, t� � 0 c < jxj < h �17�

f�x, 0, t� � 0 ÿ h < x < h �18�

sxz�2h, y, t� � 0 ÿ1 < y < �1 �19�

Dx�2h, y, t� � 0 ÿ1 < y < �1 �20�

and the electric displacement on the crack surfaces Dy�x, 0, t� consists of two parts, the imposed
ÿD0H�t� and the unknown caused by ÿt0H�t�:

Introducing Laplace transform as follows

w��x, y, s� �
��1
0

w�x, y, t� exp� ÿ st� dt �21�

f��x, y, s� �
��1
0

f�x, y, t� exp� ÿ st� dt �22�

w�x, y, t� � 1

2pi

�
Br

w��x, y, s� exp�st� ds �23�

f�x, y, t� � 1

2pi

�
Br

f��x, y, s� exp�st� ds �24�

where Br denotes the Bromwich path.
Noticing that the mechanical±electrical ®elds are physically antisymmetric with respect to the plane

y � 0 and symmetric with respect to x � 0, Fourier cosine and sine transforms are applied to give the
solutions as

w��x, y, s� � 2

p

��1
0

A1�x, s� exp� ÿ ay� cos�xx� dx� 2

p

��1
0

A2�x, s� cosh�ax� sin�xy� dx �25�
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f��x, y, s� � 2

p

��1
0

�
e15
e11

A1�x, s� exp� ÿ ay� ÿ 1

e11
B1�x, s� exp� ÿ xy�

�
cos�xx� dx

� 2

p

��1
0

�
e15
e11

A2�x, s� cosh�ax� ÿ 1

e11
B2�x, s� cosh�xx�

�
sin�xy� dx �26�

where A1�x, s�, A2�x, s�, B1�x, s�, and B2�x, s� are the unknowns to be solved and

a �
�����������������
x2 � s2

c2T

s
cT �

������������������������������ÿ
c44 � e215=e11

�
r

s
�27�

We proceed with the impermeable case. In Laplace transform domain, substituting Eqs. (25) and (26)
into Eqs. (3) and (5), and using Eqs. (14) and (15), we obtain��1

0

A1�x, s� exp� ÿ ay�x sin�xh� dx �
��1
0

aA2�x, s� sinh�ah� sin�xy� dx �28�

��1
0

B1�x, s� exp� ÿ xy�x sin�xh� dx �
��1
0

B2�x, s�x sinh�xh� sin�xy� dx �29�

By applying Fourier sine transform (see, e.g., Gradshteyn and Ryzhik, 1980)

exp� ÿ ay� � 2

p

��1
0

Z sin�Zy�
a2 � Z2

dZ �30�

From Eqs. (28) and (29), we have

aA2�x, s� sinh�ah� � 2

p
x
��1
0

ZA1�Z, s� sinh�Zh�
a2 � Z2

dZ �31�

B2�x, s� sinh�xh� � 2

p

��1
0

ZB1�Z, s� sinh�Zh�
x2 � Z2

dZ �32�

De®ning dislocation density functions as

f�x, s� �

8><>:
@w��x, 0, s�

@x
ÿc < x < c

0 cRjxjRh

�33�

g�x, s� �

8><>:
@f��x, 0, s�

@x
ÿc < x < c

0 cRjxjRh

�34�

we obtain

A1�x, s� � ÿ1x
�c
0

f�u, s� sin�xu� du �35�
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B1�x, s� � 1

x

�c
0

�
e11g�u, s� ÿ e15f�u, s�

�
sin�xu� du �36�

From Eqs. (31) and (32), A2�x, s� and B2�x, s� can be expressed, respectively, as

A2�x, s� � ÿx exp� ÿ ah�
a2 sinh�ah�

�c
0

f�u, s� sinh�au� du �37�

B2�x, s� � ÿexp� ÿ xh�
x sinh�xh�

�c
0

�ÿ e11g�u, s� � e15f�u, s�
�

sinh�xu� du �38�

3. Singular integral equations and solutions

Substituting Eqs. (25) and (26) into Eqs. (4) and (6) in Laplace transform domain, we obtain

s�yz�x, 0, s� �
2

p

(
ÿ
��1
0

�
c44 � e215

e11

�
aA1�x, s� cos�xx� dx�

��1
0

e15
e11

B1�x, s�x cos�xx� dx

�
��1
0

�
c44 � e215

e11

�
A2�x, s� cosh�ax�x dxÿ

��1
0

e15
e11

B2�x, s� cosh�xx�x dx

)
�39�

D�y�x, 0, s� �
2

p

(
ÿ
��1
0

B1�x, s�x cos�xx� dx�
��1
0

B2�x, s�x cosh�xx� dx

)
�40�

By means of Eqs. (35)±(38), (10) and (11) in Laplace transform domain, we can obtain following the
method developed by Erdogan, 1975 the singular integral equations

c44
p

�c
0

f�u, s�
uÿ x

du� e15
p

�c
0

g�u, s�
uÿ x

du� 1

p

�c
0

�
Q11�u, x�f�u, s� �Q12�u, x�g�u, s�

�
du � ÿt0

s

e15
p

�c
0

f�u, s�
uÿ x

duÿ e11
p

�c
0

g�u, s�
uÿ x

du� 1

p

�c
0

�
Q21�u, x�f�u, s� �Q22�u, x�g�u, s�

�
du � ÿD0

s

0 < x < c

�41�

where Qij� � are, for conciseness, given in Appendix A.
Eq. (41) can be solved by introducing two nondimensional variables r and r de®ned by

u � r� 1

2
c x � r� 1

2
c �42�

then Eq. (41) becomes
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c44
p

�1
ÿ1

F�r, s�
rÿ r

dr� e15
p

�1
ÿ1

V�r, s�
rÿ r

dr� 1

p

�1
ÿ1

h
�Q11�r, r�F�r, s� � �Q12�r, r�V�r, s�

i
dr � ÿt0

s

e15
p

�1
ÿ1

F�r, s�
rÿ r

drÿ e11
p

�1
ÿ1

V�r, s�
rÿ r

dr� 1

p

�1
ÿ1

h
�Q21�r, r�F�r, s� � �Q22�r, r�V�r, s�

i
dr � ÿD0

s

ÿ 1 < r < 1

�43�

where F� �, V� � and �Qij are given in Appendix A.
Based on the numerical method (see, e.g., Erdogan, 1975), F�r, s� and V�r, s� are expressed as

F�r, s� � R�r, s���������������
1ÿ r2

p V�r, s� � T�r, s���������������
1ÿ r2

p �44�

and expanding R�r, s�, T�r, s� in forms of Chebyshev polynomials

R�r, s� �
X1
i�0

CiTi�r� T�r, s� �
X1
i�0

DiTi�r� �45�

It follows that a system of linear algebraic equations can be obtained by using Gauss±Chebyshev
formula (see, e.g., Erdogan, 1975)Xn

l�1

�
c44

rl ÿ rm
� �Q11�rl, rm�

�
R�rl, s�

n
�
Xn
l�1

�
e15

rl ÿ rm
� �Q12�rl, rm�

�
T�rl, s�

n
� ÿt0

sXn
l�1

�
e15

rl ÿ rm
� �Q21�rl, rm�

�
R�rl, s�

n
ÿ
Xn
l�1

� e11
rl ÿ rm

ÿ �Q22�rl, rm�
�
T�rl, s�

n
� ÿD0

s

�46�

where

Tn�rl � � 0 rl � cos

�
2lÿ 1

2n
p

�
l � 1, . . . n

Unÿ1�rm� � 0 rm � cos

�
mp
n

�
m � 1, . . . nÿ 1

We obtain 2�nÿ 1� equations with 2n unknown quantities to be solved. Noticing that f �x, s�, g�x, s� are
odd functions with respect to x, i.e., f �0, s� � 0, g�0, s� � 0, in other words, F�r, s� and V�r, s� have no
singularities at r � ÿ1: As in Achenbach et al. (1980) R�rn, s� and T�rn, s� are taken to be zero since rn
is the closest of rl to ÿ1 in the limiting sense as n41: Then we can solve this linear algebraic system
of 2�nÿ 1� � 2�nÿ 1� to obtain the values of R�rl, s� and T�rl, s�:

The dynamic stress intensity factor and the electric displacement intensity factor in Laplace transform
domain are determined as

K �III�c, s� � lim
x4 c�

�����������������
2�xÿ c�

p
s�yz�x, 0, s� �47�

K �D�c, s� � lim
x4 c�

�����������������
2�xÿ c�

p
D�y�x, 0, s� �48�

By virtue of the property of Chebyshev polynomials (see, e.g., Erdogan, 1975)
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1

p

�1
ÿ1

Tn�u� du

�uÿ x�
��������������
1ÿ u2
p � ÿ jxj

x
��������������
x 2 ÿ 1
p

�
xÿ jxj

��������������
x 2 ÿ 1
p

x

�n
n � 0, 1, . . . ,jxj > 1 �49�

we obtain

K �III�c, s� � ÿ
����
c

2

r �
c44R�1, s� � e15T�1, s�

� �50�

K �D�c, s� � ÿ
����
c

2

r �
e15R�1, s� ÿ e11T�1, s�

� �51�

The Laplace inverse transformations of Eqs. (50) and (51) are carried out by the numerical method
developed by Miller and Guy (1966). In this paper, we present the values of KIII�c, t� and KD�c, t� within
a range of cTt=c � 0±10:

For the impermeable case, as the electrical impact is loaded, it is not clear that the dynamic stress
intensity factor will play the same role as in the purely elastic case. Therefore, we introduce the dynamic
energy release rate G as Pak (1990) did.

According to Eqs. (47), (48), (50) and (51), as x4c�, syz�x, 0, t�, Dy�x, 0, t� and w�x, 0, t�, f�x, 0, t�
can be approximated as�

syz�x, 0, t�
Dy�x, 0, t�

�
� 1�����������������

2�xÿ c�p �
KIII�c, t�
KD�c, t�

�
�52�

�
w�x, 0, t�
f�x, 0, t�

�
�

�����������������
2�cÿ x�p

c44e11 � e215

�
e11 e15
e15 ÿc44

��
KIII�c, t�
KD�c, t�

�
�53�

Substituting Eqs. (52) and (53) into

Gdc � 2

�c�dc
c

1

2

�
syz�x, 0, t�, Dy�x, 0, t�

��
w�xÿ dc, 0, t�, f�xÿ dc, 0, t��T dx �54�

yields

G � p
2
ÿ
c44e11 � e215

��e11K 2
III�c, t� � 2e15KIII�c, t�KD�c, t� ÿ c44K

2
D�c, t�

� �55�

For electrical contact case, the singular integral equation can be derived by a similar method as

c44
p

�c
0

f�u, s�
uÿ x

du� 1

p

�c
0

Q11�u, x�f�u, s� du � ÿt0
s

�56�

and by means of the solutions of Eq. (56), the electric displacement D�y�x, 0, s� on crack surfaces can be
obtained as

D�y�x, 0, s� �
e15
p

�c
0

f�u, s�
uÿ x

du� 1

p

�c
0

Q21�u, x�f�u, s� duÿ D0

s
�57�

The dynamic stress intensity factor in Laplace domain and the dynamic energy release rate are
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K �III�c, s� � ÿ
����
c

2

r
c44R�1, s� �58�

G � p
2c44

K 2
III�c, t� �59�

The analysis of the electrical contact case shows that the imposed electric displacement impact doesn't
contribute to the dynamic stress intensity factor and the energy release rate, and the dynamic stress
intensity factor remains to be thought of as the fracture parameter as in the purely elastic case. In the
absence of the mechanical impact, in other words, the material is in e�ect seamless as far as the electric
®eld is concerned and the ®eld will not be perturbed by the presence of the crack (see, e.g., McMeeking,
1989).

4. Results and discussion

We carry out numerical calculations for the piezoelectric material BaTiO3 of which the material
constants are (see, e.g., Narita and Shindo, 1998)

c44 � 4:4� 1010 N=m2 e15 � 11:4 C=m2

r � 5700 kg=m3 e11 � 128:3� 10ÿ10 C=Vm

The loading combination parameter l is determined as l � D0e15=�t0e11� which is used to re¯ect the
relation between the shear impact ÿt0H�t� and the electrical impact ÿD0H�t�: Without any loss in
generality, we take t0 � 1:2� 106 N/m2, and D0 is determined by the combination parameter l: G0

denotes the energy release rate for the unbounded piezoelectric material subjected to static shear ÿt0,
and can be written as (see, e.g., Pak, 1990)

G0 � pce11t20 =
ÿ
2c44e11 � 2e215

� �60�
In numerical procedure, we take n � 49 to insure the precision of 0.00001 for c=hR0:8: For the case
where only the shear impact is loaded, the results in Fig. 2 indicate that the value of the dynamic stress
intensity factor increases quickly with time, reaches a peak value and then decreases oscillating around
the corresponding static value. The peak value of the dynamic stress intensity factor will increase as the
ratio c/h increases. When the crack tips approach the strip edges, e.g., c=h � 1=1:25, the peak value of
the dynamic stress intensity factor will become very close to the corresponding static value. This
tendency indicates that the boundary e�ects will dominate the dynamic stress intensity factor for the
large value of c/h. The above phenomena can also be observed in Fig. 3. This shows that the dynamic
stress intensity factor and the dynamic energy release rate play the same role when only the shear
impact is imposed.

Figs. 4±6 show the e�ects of the loading combination parameter l � D0e15=�t0e11� on the dynamic
stress intensity factor and the dynamic energy release rate for the cases where c=h � 1=1:5 and c=h � 0:
Though the dynamic stress intensity factor will be greater or less than zero in di�erent time domains
determined by the sign and magnitude of l, we cannot dictate that the combination of the external
impacts will promote or retard the crack extension. The electrical ®elds will contribute to the dynamic
energy release rate as the impermeable case is considered, so it seems appropriate to introduce the
dynamic energy release rate to indicate the crack extension force. Noticing that at t � 0, the dynamic
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Fig. 2. Normalized dynamic stress intensity factors for various ratios of crack length to strip width with normalized time.

Fig. 3. Normalized dynamic energy release rates for various ratios of crack length to strip width with normalized time.
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Fig. 4. Normalized dynamic stress intensity factors for various load combination parameters with normalized time.

Fig. 5. Normalized dynamic energy release rates for various load combination parameters with normalized time.
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Fig. 6. Normalized dynamic energy release rates stress for various load combination parameters with normalized time.

Fig. 7. Normalized dynamic stress intensity factors for various ratios of crack length to strip width with normalized time.
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energy release rate for a ®xed l equals to that for ÿl: We take two opposite values of l as a l-pair, e.g.,
l � 0:5 and l � ÿ0:5 constitute a l-pair. On the one hand, the results in Figs. 5 and 6 indicate that, as
a l-pair is concerned, the negative electrical impacts imposed on crack surfaces are more liable to
promote the crack extension. On the other hand, Figs. 5 and 6 show that the peak value of the dynamic
energy release rate depends greatly on the values of l and c/h. In particular, the value of l exerts a
signi®cant in¯uence on the peak value. In this sense, it can be expected that the crack extension may be
retarded by adjusting the loading combination parameter l:

For the electrical contact case, the crack responses only to the mechanical impact. In Fig. 7, we give
the dynamic stress intensity factor as a function of c/h and cTt=c: By comparing the results in Fig. 7
with those in Fig. 2, no distinct di�erence between them can be found. In the absence of the electrical
impact, in other words, the dynamic stress intensity factor is insensitive to the types of electrical
boundaries, e.g., the impermeable crack and the electrical contact crack. The results reveal the same
interaction between the inertia and the crack geometry characterized by c/h (Fig. 2), and it is this
interaction that determines the dynamic stress intensity factor.
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Appendix A

Q11�u, x� �
��1
0

2

�
c44 � e215

e11

��
a
x
ÿ 1

�
cos�xx� sin�xu� du� c44

u� x
ÿ

�1
0

2

�
c44 � e215

e11

�
x2 sinh�au� cosh�ax�
a2 sinh�ah� exp�ah� dx�

��1
0

2e215
e11

sinh�xu� cosh�xx�
sinh�xh� exp�xh� dx

�A1�

Q12�u, x� � e15
u� x

ÿ
�1
0

2e15 sinh�xu� cosh�xx�
sinh�xh� exp�xh� dx �A2�

Q21�u, x� � Q12 �A3�

Q22�u, x� � ÿ e11
u� x

�
�1
0

2e11 sinh�xu� cosh�xx�
sinh�xh� exp�xh� dx �A4�

F�r, s� � f

�
r� 1

2
c, s

�
V�r, s� � g

�
r� 1

2
c, s

�
�A5�

�Q11�r, r� �
c

2
Q11

�
r� 1

2
c,

r� 1

2
c

�
�Q12�r, r� �
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